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abstract Capture- recapture studies and analyses have become an important tool for

the study of bird populations. One reason for the rapid advancement in this area has been

the EURING conferences where population biologists and statisticians meet to review

recent prog ress, identify areas that require further work, and work collaborately to solve

real world problems. In this paper, we forecast the needs for future research in this area

and review the recent conference to try and identify what questions are yet unsolved.

This EURING conference was dedicated to Dr George Seber who was the author of a

number of key papers and whose name is synonymous with `The estimation of animal

abundance and related parameter’ (Seber, 1982). He has retired from working in this ® eld.

1 Preface

The EUR ING meetings are the premiere conference for advances in capture-

recapture methodology, particularly as applied to studying bird populations. The

meeting typically alternates between Europe and North America. EURING 2000

was held in early October just outside the Pt. Reyes Bird Laboratory in California.

This paper will begin with a forecast of where capture- recapture may head over

the next few years followed by a summary of the key conference ideas and

challenges for the future.

2 Where is capture-recapture going?

It is interesting looking back over about 50 years of papers on animal abundance

to see how far we have come. Computers have revolutionized our subject as they
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have done for the whole of statistics. In the early days, the aim was to set up

capture- recapture models that had explicit maximum likelihood estimates rather

than to investigate more realistic models possibly requiring iterative solution. This

has, of course, all changed. Models are now routinely ® tted with many hundreds

of parameters, and numerical solutions rather than analytical formulae are now the

order of the day in ® tting the models and determining goodness-of- ® t.

Advances in the ® eld have been numerous and the growth in the basic literature

explosive. For example, Seber (1973) had over 400 references; in Seber (1982)

this had grown to over 1000 references. And in subsequent reviews (Seber, 1986,

1992; Schwarz & Seber, 1999) the number of new papers increased to over 350,

500, and 400 respectively, with the latter number now excluding all application

papers and consisting of just new theoretical advances!

2.1 Closed population Ð a plethora of methods. Consolidation required

Closed population models are the `simplest’ of capture- recapture studies and form

one of the basic components of the robust design. However, there are many

diþ erent methods to estimate the abundance in these populations. These include

the standard maximum likelihood methods outlined in Otis et al. (1978); the

jackknife models of Otis et al. (1978); the coverage models of Chao, and colleagues

(Chao et al., 1992); the martingale estimating equation models of Becker(1984),

Yip (1989), Lloyd & Yip (1991) and others; the log-linear models of Cormack

(1989); the logistic models of Huggins (1989) and Alho (1990); the non-parametric

MLE methods of Norris & Pollock (1996); the mixture models of Pledger (2000);

the log-linear constrained models of Evans et al. (1994); and Bayesian models

(Underhill, 1990). The driving force behind many of these techniques has been

heterogeneity in capture probabilities among individual animals; a common feature

of many animal populations. Some of the models incorporate heterogeneity by

using covariates or strati® cation, an approach to modelling that is being used more

and more.

With this plethora of methods, the practitioner is left in a quandaryÐ what

methods are appropriate for what conditions and types of studies. What is needed

here is a comparison of the various closed models with respect to both eý ciency

and robustness. Also, further research is needed on interval estimation. Typically,

intervals based on pro ® le likelihoods are more reliable than those based on the

(hopefully) asymptotic normality of the maximum likelihood estimates. However,

in the case of non-maximum likelihood methods, there are no obvious suggestions

on how to improve their performance.

2.2 Open population models Ð the Cormack- Jolly- Seber model

In Cormack- Jolly- Seber studies (Cormack, 1964; Jolly, 1965; Seber, 1965),

marked animals are released and followed over time. Emphasis is on estimating

survival; abundance cannot be estimated as the process by which marked animals

are obtained is not modelled, so that all inference is conditional upon the release.

The key paper by Lebreton et al. (1992) started a revolution that is still ongoing.

The adoption of an ANOVA type framework and model selection methods are the

core to most of the modern methodology.

Live-recaptures, resightings and dead-recoveries in tandem with both age-

dependence and tagging eþ ects can be incorporated into a single model (Barker,
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1999). Freeman & Morgan (1992) and subsequent papers have developed elaborate

models to deal with birds ringed as nestlings. It is now not uncommon to see

models with several hundreds of parameters. However, this raises the twin issues

of the identi® ability of parameters, and the proliferation of parameters (cf. Burnham

et al., 1995). Such elaborate models, have taken us about as far as we can probably

go in terms of numbers of parameters. There is only a limited amount of data

available so that as the number of parameters goes up, the eý ciency of estimation

goes down. In addition, sparse data may limit the number of parameters that can

be ® tted; often unrealistic restrictions need to be applied to the parameters to

achieve estimation.

Clearly this trend in increasing complexity needs to be reversed in some way

towards models with fewer parameters. Perhaps what may be needed are regression

models where much of the variation and overdispersion can be incorporated into

the `error’ term. For example, if parameters are interpreted as mean values (e.g.

the average probability of capture), heterogeneity can often be incorporated into a

multinomial distribution. However, regression models may do it more e þ ectively

by including any variation about the mean in the error term. For example, suppose

X i 5 Np i + e i as in a Binomial model, and p i 5 p + m i , then X i 5 Np + N m i + e i 5
Np + n i . Because of all the various sorts of variation taking place in a study, we

may not need to be too concerned about non-homogeneous errors or non-normality

of the errors. A good example where the error term may `hide a multitude of sins’

is Leslie’ s (unweighted) catch-eþ ort regression model (Seber, 1982, Section 7.1.3).

The same idea can be applied in the framework of a generalized linear model, but

with a diþ erent error structure (e.g. normal rather than Poisson generated).

Regression models also allow for the ready incorporation of covariates. Of particular

interest is Burnham’s random eþ ects model (Burnham, 2001; Burnham & White,

2002) in which a long sequence of survival estimators can be summarized in terms

of two parameters, a mean and a variance. We envisage mixed models with some

random eþ ects will be used more widely. Meta-analysis, used in subjects such as

education, de® nitely has a place here as another way of combining information

and reducing the number of parameters. Radio tagging also has a niche, although

handling the large numbers of radio tags needed for e ý cient estimation creates

cost and logistical problems.

Linked with the proliferation of parameters is the related problem of model

selection, especially when there are several close contenders, all equally useful

and biologically plausible. Likelihood ratio tests have been traditionally used to

discriminate between models. Because it was computationally diý cult to ® t models,

alternatives to the usual likelihood ratio test were used, such as score tests (e.g.

Catchpole & Morgan, 1996) where only estimates under the null hypothesis, or

Wald tests where only estimates under the most general model, are required.

Techniques for variable selection analogous to those used in regression situations

(e.g. forward, backward, and stepwise selection) have been proposed but these

su þ er from the same problems as found in regression settings. All of these

hypothesis testing methods only address one side of the problem Ð if a factor is

`signi® cant’ , then one wants to include it in the model, but the `cost’ in terms of

lost precision is not addressed.

For these reasons, there has been a dramatic shift away from using hypothesis

tests in model selection to use measures such as AIC to compare competing

models. Researchers are becoming more aware of the dangers associated with

selecting a model and then using it to estimate parameters without taking into



8 G. A. F. Seber & C. J. Schwarz

account the process of model selection (Burnham & Anderson, 1998). As a result,

model selection is now somewhat of an industry. Basing a ® nal estimate on some

sort of (weighted) average of estimates from related models is clearly a reasonable

thing to do, although care is needed when there are `good’ models giving very

diþ erent estimates. One can use either an ad hoc non-Bayesian approach for

choosing the weights, as in Buckland et al. (1997), or a Bayesian approach using

Bayes’ factors, as in Hoeting et al. (1999). More research will no doubt continue

in this ® eld both with regard to the choice of selection criteria (which we need to

know more about) and the selection of the weights.

The CJS models can also be used to estimate movement of the animals. The

models were originally developed to investigate physical movement among diþ erent

areas (Schwarz et al., 1993; Brownie et al., 1993) but `movement’ can be generalized

to any movement among states. For example, Nichols et al. (1992) estimate

movements among weight classes. Lebreton et al. (1999) and Lebreton & Pradel

(2001) showed how the multistrata approach can be used to investigate more

general questions in ecology, or to combine sources of information. Similar

comments about parameter proliferation also apply here, but the danger is greater

as the number of parameters increases with the square of the number of states.

Again, some sort of model simpli® cation is neededÐ perhaps the movement rates

can be modelled as functions of distance between the sites or some underlying

smooth curve that is discretized (e.g. Schwarz & Dempson, 1994).

Many CJS studies are observational rather than manipulative. It was therefore

good to see a session labelled `Formal experiments with ringed birds’ . In practice,

experimental design tends to be more of an art than a science, but the formal

aspects of design do help us to identify some crucial issues. These include such

things as choosing the blocking factors; determining the nature, size and numbers

of the experimental units; and deciding which eþ ects are ® xed and which are

random (Schwarz, 2002). This is a largely untapped area in the CJS model where,

in the past, all e þ ects are treated as ® xed and there is a single residual error term.

2.3 Open population models Ð the Jolly- Seber model

Jolly- Seber ( JS) studies are similar to those of CJS studies except that now the

process by which new animals are captured, marked, and returned to the population

must be modelled. Ironically, the ® rst applications of mark- recapture methods in

the early 1960s was to estimate abundance. Survival was a nusiance parameter that

had to be estimated in order to obtain estimates of the abundances at each sample

occasion. Because of the close similarity between these two types of studies, the

concerns and research directions raised for the CJS models are also applicable to

the JS models.

The primary weakness in the JS models is the severe eþ ect of heterogeneity in

capture probabilities upon the estimates of abundance. Consequently, some of the

approaches used in closed populations to deal with the problem have now been

extended to open populations, and this process will continue in the future.

For example, the coverage method continues to be a fruitful source of model

developments. The paper by Hwang & Chao (1995), which estimates the biases of

the Jolly- Seber estimates due to the eþ ect of unequal catchabilities, is an important

extension of the coverage method into the domain of open populations. Pledger &

Eþ ord (1998) developed two additional methods to correct this bias. They derived

formulae for the asymptotic relative bias as a function of the coeý cient of variation
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in the capture-probabilities (which is estimated directly from the data) or used a

simulation-inverse- prediction correction.

Population abundance is also related to another session on the estimation of k

(population growth), a parameter which, along with applications of the Leslie

matrix, is regarded as an important part of wildlife management. However, the use

of k is problematical as it requires a stable age distribution, something not easy to

prove. In addition, estimating population growth from the CJS model and popula-

tion abundance from the JS model must be closely related. It is not clear from the

current literature the equivalence between these two approaches.

2.4 Robust design

On a number of occasions we have emphasized the importance of Pollock’ s (1982)

robust design. The robust design combines the features of closed populations

during the secondary sampling occasions with the features of open population

across the primary periods. It was originally developed to reduce the eþ ects of

heterogeneity upon the estimates of abundance but has now been extended to

diþ erentiate between in situ growth and immigration (Nichols & Pollock, 1990).

Schwarz & Stobo (1997), Kendall & Nichols (1995) and Lindberg et al. (2001)

were able to separate temporary and permanent emigration. There is clearly great

potential here for developing a whole range of models that can eþ ectively separate

out the various processes involved in an open model. The robust design has an

even greater ¯ exibility as it is essentially a combination of two diþ erent modelling

processes. A more general study design can therefore be used during the secondary

periods, e.g. Gould & Pollock (1997) used a catch eþ ort study during the secondary

periods. However, with any such structured design, the question always arises

about the best allocation of resources among the various levels of the design.

2.5 General methodological issues

2.5.1 B ayesian methods. In the early days, Bayesian models for closed populations

occasionally appeared, but never really took hold because of unrealistic priors and

the computational diý culties in calculating posterior distributions. In addition,

Bayes estimators tended to be very sensitive to the priors used (see for example

Garthwaite et al., 1995). Freeman (1990), in an unpublished PhD thesis, suggested

applying Bayesian methods to the open model based on recoveries from birds

banded as nestlings, but ran into the previously mentioned computational diý cul-

ties. A non-Bayesian solution was given by Freeman & Morgan (1992). Markov

chain Monte Carlo methods and Gibbs sampling then came on the scene providing

the tools for handling most sensible priors. The method avoids the calculation of

the complex integrals needed for completely specifying posterior distributions, and

it readily leads to a sensitivity analysis for the chosen priors. Two papers on open

models then appeared by Dupuis (1995) and Vounatsou & Smith (1995). Dupuis

developed a Bayesian framework for the Arnason- Schwarz strati® ed open model

with capture- recapture data. He utilized the idea of a missing data structure to

develop the Gibbs sampling algorithm, a technique that has promise. However, the

priors were assumed known and the sensitivity of the estimators to the priors was

not investigated. Vounatsou & Smith (1995) further developed Freeman’s Bayesian

model and compared their estimates with the maximum likehood estimates of

Freeman & Morgan (1992). The how-to-do it papers by Brooks et al. (2000a,
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2000b, 2002), and which spells out general Bayesian methods for recovery and

recapture studies is a welcome addition to the literature.

Brooks et al. (2000a) also raised the spectre of sensitivity to the prior. It is clear

that priors should be chosen on the basis of biological information and not

mathematical convenience, and a sensitivity analysis should always be carried out.

The role of Bayesian methods still needs further investigation when dealing with

sparse data, non-identi® ability and non-estimability of parameters, and out-of-

range estimates. Finally, while the computational issues that inhibited the use of

Bayesian methods in the past have diminished, the development of a standardized

computer package for capture- recapture studies is still required before these

methods will be more widely used.

2.5.2 Covariates. We have already mentioned the possibility of incorporating

covariates into models. E þ ort data has been incorporated into ® sheries models for

some time. However, one of the ® rst papers to incorporate environmental variables

as covariates in the animal population scene appears to be North & Morgan (1979),

and the theory was spelled in the key papers by Pollock et al. (1984) and Pollock

(2002). Since then, covariates have been used extensively, with logistic models in

particular being useful for modelling probabilities (e.g. Lebreton et al., 1992). With

improved monitoring devices we can expect covariate activity to increase, not only

as a means of allowing a greater variability of parameters (e.g. some parameters do

not need to be made equal for identi® ability), but also as a means of estimating

the standard parameters more eý ciently by the injection of more information.

However, we feel that covariate relationships are not always studied as carefully as

one might hope before they are used.

2.5.3 Model diagnostics. Diagnostics to determine model adequacy are often given

minimal attention when ® tting population models. Various diagnostics involving

residuals are available for linear and log-linear models (e.g. Lee & Seber, 2001),

and we need similar tools for our models and for studying covariate relationships.

Chi-squared goodness of ® t tests can have notoriously low power, particularly

when a large number of parameters are ® tted. A closer look at the data may tell us

a bit more about what is going on. Cormack (1989) made some suggestions about

appropriate residual plots, but the key problem in capture- recapture models is the

sparseness of the individual capture histories. Some sort of automated collapsing

of histories to view slices of the data will be important, such as plotting the residual

versus the number of capture occasions.

2.5.4 P1anning. Finally, there is one area where much more work needs to be done.

Suppose someone came to you to ask for advice on how to design a capture- recapture

study for a closed population. How would you go about it? What sample sizes are

required, and how many recapture samples are needed? Unfortunately, apart from

a few books and papers, little attention is often given to this problem.

3 EUR ING responds to the challenge

The EURING 2000 meetings were loosely organized around seven major sessions.

The proceedings of this conference (this issue) contain the keynote and other

papers. What follows are impressions about the key points raised in each session

and how the sessions address some of the future research directions raised above.
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3.1 Evolutionary biology

Any model is an (imperfect) re¯ ection of the real world. Over the years, model

developments have started with simple descriptions of the `mean’ e þ ects averaged

over many individuals in a population. Of course, there is no `average’ animal, as

populations consist of heterogeneous individuals. It is only natural that capture-

recapture models have become more complex, in order to try and capture some of

this heterogeneityÐ the same driving force as in the closed population models, but

with more types of parameters and behaviour that is subject to individual variability.

Strati® cation variables that operate on groups of animals (e.g. sex, age, year) have

been introduced to try and account for part of the heterogeneity in responses.

Modern software now allows us to model individual animal covariates. However,

there is a danger in taking this too far. For example, if individual covariates are

needed to predict future behaviour, what hope is there in managing populations at

an aggregate level? Paradoxically, we need to avoid paralysis from too much

information (Cooch et al., 2002)!

We note that most of the modelling eþ ort in the CJS framework has followed

marked individuals only, and it assumes independence among individual fates.

Tools to investigate the whole issue of density dependence and dependence upon

the actions of other individuals are not yet readily available. Models that estimate

abundance (e.g. Jolly- Seber models) are available, but the feedback loop between

abundance and subsequent parameters has not yet been complete. Modelling

interactions between individuals is an order more complex; n individuals have

about n
2 interactions among pairs of individuals. It is clear that the current

approaches for building models will not work.

Another important research question involves trade-oþ s between competing

courses of action. Many capture- recapture studies are pure observational studies

and teasing out trade-o þ s is diý cult. Furthermore, the results can always be

challenged as mere association rather than causation. Better experimental designs,

where demands can be deliberately modi® ed and subsequent behaviour studied,

need to be developed.

3.2 Individual covariates

Covariates can apply at two levels. First, covariates that apply at the sampling

occasion and are applicable to all animals (e.g. survival probability as a function of

winter severity) are relatively easy to ® t with current software, and the methodology

is well developed. Individual based covariates, however, are more problematical.

Such models have been developed for closed populations and CJS studies, and

these condition upon the covariates observed in the study. Unconditional inference

is more diý cult as the distribution of covariates in the unobserved population must

also be modelled. Additional work needs to be done with individual covariate

models in the JS and robust design models. McDonald & Amstrup (2002) use

covariates in the JS models and estimated population size at each sampling point

using a Horvitz- Thompson type of estimator, but this approach does not fully

integrate recruitment. Kendall (2000) has incorporated individual covariates for

the robust design at the secondary (closed) sampling occasions, but not in the

primary occasions. The biggest problem for these models is how to model the

covariates for the unobserved animals prior to their initial capture.

Individual-based, time varying covariates are the next level of complexity.



12 G. A. F. Seber & C. J. Schwarz

Unfortunately there have been no readily identi® able papers in this area, but the

theory and methods from the medical literature should provide some guidance.

A biologically interesting covariate model is that of a dependence of survival

upon density. If density (or abundance) is known from external sources (e.g. a

separate census of the population), then this is easily incorporated into CJS models

using the methods above. For example, Catchpole et al. (2000) included the known

population sizes of Soay sheep in the previous year when modelling the survival

over winter. The situation becomes more diý cult in JS models where abundance

(or density) is an unknown parameter of the model and makes the likelihood

function quite complex, as shown by Barker et al. (2002). Again further research

and model development will be needed here.

3.3 B ayesian methods

The Gibbs sampler and related developments have revolutionized the application

of Bayesian methods. Modellers are much less inhibited in their choice of prior

distributions and the complexity of the models to be ® tted. However, there are

several practical issues that need resolving.

First, adequate computational machinery needs to be developed that will make

® tting Bayesian methods as `painless’ as current methods. Given the large amount

of computation involved in the Gibbs sampler, this may require the next generation

of computers. Next, large complex models with many parameters and sparse data

may su þ er from both non-identi® ability and non-estimability. The former is a

structural problem with the model that no amount of data will resolve, while the

latter may be an artefact of a particular dataset. Catchpole & Morgan (1997) have

developed methods to identify problems with the non-Bayesian methods. In the

Bayesian methods, these problems `don’ t exist’ . All parameters are always identi® -

able and estimable because, in the worst case, the ® nal posterior is identical to the

prior distribution if the data provide no information about the parameter. Diagnos-

tic methods need to be developed for Bayesian methods to identify parameters

whose posterior distribution is driven largely by the prior. On a related note,

diagnostics are also needed to identify which posteriors are sensitive to the choice

of the prior distribution. It is not feasible to investigate individually each of several

hundred parameters.

The Bayesian approach can also be used for `model simpli® cation’ in much the

same way as the random eþ ect models (next section) have been used. This has yet

to be explored, but is a very simple extension of Bayesian methods.

3.4 Random eþ ects models

Random eþ ects models introduce model simpli ® cation to one problem of parameter

proliferation. Replacing 40 yearly survival rates by the mean survival rate and the

variation around the rate is an intermediate model between having a large number

of survival parameters and a single parameter that is assumed constant over time.

This model provides shrinkage estimates of the random parameter by shrinking

the MLE towards zero and estimates the e þ ective number of parameters needed

in determining the AIC and related indices for model selection.

Not surprisingly, the previous models are close relatives to full Bayesian models,

and are computationally more feasible when examining a large number of models.

Perhaps a good strategy would be to identify a small set of candidate models using
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these methods before attacking the problem in a fully Bayes’ context. An obvious

area of research is a detailed comparison of the random eþ ects and Bayesian

approaches to identify under what conditions they give similar and dissimilar

results.

Random eþ ects models can also be used to model heterogeneity among animals

rather among parameters. Pledger & Schwarz (2002) develop a non-parametric

approach where a simple two-support point distribution eþ ectively accounts for

most of the heterogeneity in animal survival. Again, a comparison between this

approach and the Bayesian approach is needed.

Some potential problems to be overcome with the random eþ ect models are

technical and operational. The big question is why should a practioner use them?

What additional information is gleaned from these models? The methods presented

can be generalized to other parameters such as population growth. But, unlike

survival rates, population growth consists of the net e þ ect of two distinct pro-

cesses Ð recruitment and survival. Is it sensible to model this joint process by a

single random variable? Perhaps it is more sensible to model simultaneously both

processes by a bivariate random variable.

3.5 Meta-population and multi-stratum models

Multi-strata models present a uni® ed method to dealing with transition data where

the de® nition of states can be quite general. They were originally developed to deal

with movement data, but changes in weight classes, breeding status, and the type

of recapture /resighting can also be formulated. The number of parameters can

become large very quickly in these models, particularly if a general transition matrix

allowing for arbitrary movements among states is allowed. Again, these type of

models may pro ® t from `simpli® cation’ , i.e. modelling movement rates as functions

of covariates such as the distance between areas. There is also a ® xed amount of

information in the data so that, as mentioned before, diluting the information over

many parameters leads to poor inference on any one parameter. Simpli® cation can

also take place across time. For example, can Burnham’s (2001) random eþ ects

models be generalized to allow yearly movement rates to be random ¯ uctuations

around an overall mean? This will require a multivariate approach as the movement

rates are obviously constrained to sum to one within each year.

The session also identi® ed some technical issues that need to be resolved in the

next few years. The likelihood surfaces are very ¯ at, and it is relatively easy to get

stuck at a local maximum rather than the global maximum. The ¯ atness of the

likelihood is also related to identi® ability and estimability concerns so that better

diagnostics need to be developed. Many of the parameters may have estimates at

the boundary of the parameter space. How do these aþ ect the model selection

criterion? Once a model is developed, how is the goodness of ® t assessed? At the

moment, there are no general measures, as have been developed for the CJS

models.

Several methodological issues also arose. First, a generalization of the Arnason

(1972, 1973) models that incorporate abundance estimation need to be available

in software. Second, the Strati® ed-Petersen estimator (Plante et al., 1988; Schwarz

& Taylor, 1989) is not often used in CJS studies, but it has applications for bird

studies when abundance is of interest. Lastly, is there a way to generalize the Pradel

(1996) methods of reading the capture histories backwards in a similar fashion for

movement studies?
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3.6 Formal experiments

The design and analysis of experiments is a well developed ® eld in many experi-

mental sciences. However, many bird studies are purely observational in nature

and few are manipulative. This leads to the obvious mantra `No causation with

manipulation’ . Manipulative experiments are often diý cult to perform and so the

gold-standard many not be an attainable goal. However, medical studies are faced

with similar problems, and this ® eld does much more with meta-analysis and

comparing results across many diþ erent studies. These techniques could prove to

be an important intermediate step before formal experiments.

One of the key problems encountered in the analysis of formal experiments is

the distinction between the observational unit (the bird) and the experimental unit.

In some cases these do not coincide, e.g. if the experimental unit is a colony. This

gives rise to several diþ erent `error’ terms in the formal ANOVA of experiments,

and these do not seem to have any counterpart in many bird studies. Generalizing

the CJS model to include multiple sizes of experimental units will be diý cultÐ the

® eld of generalized linear mixed models is large and complexÐ and we suspect that

the Bayesian methods will be the general way to analyse these types of experiments.

Pseudo-replication (Hurlbert, 1984) is also an important issue. For example,

studies where sets of birds are taken from one urban and one rural area to compare

their survival rates are examples of pseudo-replication. Here, inference is limited

to comparison between these two speci® c population and not to urban /rural areas

in general. Again, the subject of meta analyses, where many studies of limited size

are combined, needs more attention.

3.7 Population growth

Rather than estimating abundance directly, which is a diý cult problem because of

biases introduced by heterogeneity in catchability, it may be easier to measure

population change, i.e. growth or decline. One traditional tool has been Leslie

matrices where the dominant eigenvalue indicates the asymptotic properties of the

population. However, many populations are far from asymptopic, and the time-

speci® c population growth rates can be estimated using the CJS models.

As was shown in the conference many times, these methods are equivalent to

the ordinary Jolly- Seber model, and so the same assumptions must be made. In

particular, changes in study area de® nition are completely confounded with changes

in population size. There is a real danger in uncritically using CJS studies, where

birds can be marked and released in a haphazard fashion, for population growth

studies where modelling the latter process is what determines population growth.

The current methods allow fairly straightforward estimation of population growth

rates, but how these depend upon other characteristics of the population is also of

interest. Parameters such as elasticity and density dependence need to be incorpo-

rated into the analysis methods.

Can the Leslie matrix approach and the CJS approaches be uni® ed? The missing

link in capture- recapture studies is that the new entrants to the population are not

identi® ed as to their origin, e.g. by age of the parents. If this information could be

captured, then it should be possible to construct a version of the CJS model that

also estimates fecundity (Nichols & Hines, 2002). It is also possible to combine

mark- recapture with census information (Besbeas et al., 2002) to estimate all the

necessary parameters.
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4 Challenges for the future

Several challenges are apparent. The technical challenges have been presented in

the above sections and will not be repeated here. However, there are several cross-

sessional and cross-model challenges to be addressed.

The EURING conferences are the premiere conferences for new developments

in capture- recapture methodology. Indeed, much of recent developments in these

methods has been driven by past conferences. However, capture- recapture methods

are used by other disciplines as well, and the challenge is to transfer the technology

in both directions. For example, studies in mammals often use capture- recapture

methods, but how do these scientists learn of the new advances? In the other

direction, a vast literature has developed in using multi-list methods in medical

problems (e.g. disease ascertainment), but few of these developments have appeared

in the EUR ING conferences.

Where does a scientist begin in designing a study? What are the trade-o þ s

between using simple banding methods and more complex radio-telemetry studies.

For example, approximately 800 radio-tags with 100% detection probabilities give

approximately the same precision for survival estimates as 20 000 simple tags with

20% detection probabilities! How should eþ ort be allocated among recaptures and

resightings when both types of recoveries are available? How much total e þ ort is

needed? Should studies be done that have only a 30% chance of detecting an

important e þ ect or that yield estimates with coeý cients of variation approaching

100%? Despite the sophistication in tools for analysing completed studies, the

planning process has been neglected. A comprehensive guide to the trade-o þ s

involved in designing these studies needs to be developed.

Density e þ ects are conspicuously absent from the modelling e þ orts. How can

density be incorporated as a covariate or parameter into the models? Models with

internal feedback loops are notoriously diý cult to model. Much of the ® sheries

literature is concerned with stock assessments, which include a stock-recruitment

component, and the lessons from these studies should be incorporated into bird

studies.

Capture- recapture studies are used for large and small scale studies. However,

the objectives of these types of studies are quite diþ erent and it would be unusual

if the same study design and trade-oþ s are applicable to both types of designs.

Some specialized designs need to be developed for the diþ erent scales of studies.

In conclusion, we see that the explosion of papers on estimating animal popula-

tion parameters that have appeared in the last 20 years re¯ ects the importance of

the subject, the increased computing power available, and the increased statistical

sophistication of the practitioners. As noted in Schwarz & Seber (1999), many

statistical methods have been used to attack these problems so that the training of

future scientists in this subject area should not concentrate only on population

methodology. The training needs to be broadly based regarding statistics and

computing.
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